Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585915

RESUMO

A hexanucleotide repeat expansion (HRE) in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, patients with the HRE exhibit a wide disparity in clinical presentation and age of symptom onset suggesting an interplay between genetic background and environmental stressors. Neurotrauma as a result of traumatic brain or spinal cord injury has been shown to increase the risk of ALS/FTD in epidemiological studies. Here, we combine patient-specific induced pluripotent stem cells (iPSCs) with a custom-built device to deliver biofidelic stretch trauma to C9orf72 patient and isogenic control motor neurons (MNs) in vitro. We find that mutant but not control MNs exhibit selective degeneration after a single incident of severe trauma, which can be partially rescued by pretreatment with a C9orf72 antisense oligonucleotide. A single incident of mild trauma does not cause degeneration but leads to cytoplasmic accumulation of TDP-43 in C9orf72 MNs. This mislocalization, which only occurs briefly in isogenic controls, is eventually restored in C9orf72 MNs after 6 days. Lastly, repeated mild trauma ablates the ability of patient MNs to recover. These findings highlight alterations in TDP-43 dynamics in C9orf72 ALS/FTD patient MNs following traumatic injury and demonstrate that neurotrauma compounds neuropathology in C9orf72 ALS/FTD. More broadly, our work establishes an in vitro platform that can be used to interrogate the mechanistic interactions between ALS/FTD and neurotrauma.

2.
Ann Biomed Eng ; 52(3): 600-610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993751

RESUMO

This study aims to facilitate intracranial simulation of traumatic events by determining the mechanical properties of different anatomical structures of the brain. Our experimental indentation paradigm used fresh, post-operative human tissue, which is highly advantageous in determining mechanical properties without being affected by postmortem time. This study employed an inverse finite element approach coupled with experimental indentation data to characterize mechanical properties of the human hippocampus (CA1, CA3, dentate gyrus), cortex white matter, and cortex grey matter. We determined that an uncoupled viscoelastic Ogden constitutive formulation was most appropriate to represent the mechanical behavior of these different regions of brain. Anatomical regions were significantly different in their mechanical properties. The cortex white matter was stiffer than cortex grey matter, and the CA1 and dentate gyrus were both stiffer than cortex grey matter. Although no sex dependency was observed, there were trends indicating that male brain regions were generally stiffer than corresponding female regions. In addition, there were no statistically significant age dependent differences. This study provides a structure-specific description of fresh human brain tissue mechanical properties, which will be an important step toward explicitly modeling the heterogeneity of brain tissue deformation during TBI through finite element modeling.


Assuntos
Encéfalo , Substância Branca , Humanos , Masculino , Feminino , Análise de Elementos Finitos , Hipocampo , Substância Cinzenta , Estresse Mecânico , Elasticidade
3.
Neurotrauma Rep ; 4(1): 682-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908320

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cells can reproduce human-specific pathophysiology, patient-specific vulnerability, and gene-environment interactions in neurological disease. Human in vitro models of neurotrauma therefore have great potential to advance the field. However, this potential cannot be realized until important biomaterials challenges are addressed. Status quo stretch injury models of neurotrauma culture cells on sheets of polydimethylsiloxane (PDMS) that are incompatible with long-term monoculture of hiPSC-derived neurons. Here, we overcame this challenge in an established human in vitro neurotrauma model by replacing PDMS with a highly biocompatible form of polyurethane (PU). This substitution allowed long-term monoculture of hiPSC-derived neurons. It also changed the biomechanics of stretch injury. We quantified these changes experimentally using high-speed videography and digital image correlation. We used finite element modeling to quantify the influence of the culture substrate's thickness, stiffness, and coefficient of friction on membrane stretch and concluded that the coefficient of friction explained most of the observed biomechanical changes. Despite these changes, we demonstrated that the modified model produced a robust, dose-dependent trauma phenotype in hiPSC-derived neuron monocultures. In summary, the introduction of this PU film makes it possible to maintain hiPSC-derived neurons in monoculture for long periods in a human in vitro neurotrauma model. In doing so, it opens new horizons in the field of neurotrauma by enabling the unique experimental paradigms (e.g., isogenic models) associated with hiPSC-derived neurons.

4.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37104042

RESUMO

Seizures are a frequent complication of adult-type diffuse gliomas, and are often difficult to control with medications. Gliomas with mutations in isocitrate dehydrogenase 1 or 2 (IDHmut) are more likely than IDH-wild type (IDHwt) gliomas to cause seizures as part of their initial clinical presentation. However, whether IDHmut is also associated with seizures during the remaining disease course, and whether IDHmut inhibitors can reduce seizure risk, are unclear. Clinical multivariable analyses showed that preoperative seizures, glioma location, extent of resection, and glioma molecular subtype (including IDHmut status) all contributed to postoperative seizure risk in adult-type diffuse glioma patients, and that postoperative seizures were often associated with tumor recurrence. Experimentally, the metabolic product of IDHmut, d-2-hydroxyglutarate, rapidly synchronized neuronal spike firing in a seizure-like manner, but only when non-neoplastic glial cells were present. In vitro and in vivo models recapitulated IDHmut glioma-associated seizures, and IDHmut inhibitors currently being evaluated in glioma clinical trials inhibited seizures in those models, independent of their effects on glioma growth. These data show that postoperative seizure risk in adult-type diffuse gliomas varies in large part by molecular subtype, and that IDHmut inhibitors could play a key role in mitigating such risk in IDHmut glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Convulsões/tratamento farmacológico , Convulsões/genética , Progressão da Doença , Isocitrato Desidrogenase/genética , Mutação
5.
Front Cell Neurosci ; 16: 898865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774083

RESUMO

The last major review of progress toward a chemical retinal prosthesis was a decade ago. Many important advancements have been made since then with the aim of producing an implantable device for animal testing. We review that work here discussing the potential advantages a chemical retinal prosthesis may possess, the spatial and temporal resolutions it might provide, the materials from which an implant might be constructed and its likely effectiveness in stimulating the retina in a natural fashion. Consideration is also given to implant biocompatibility, excitotoxicity of dispensed glutamate and known changes to photoreceptor degenerate retinas.

6.
Ann Biomed Eng ; 50(11): 1452-1460, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35034227

RESUMO

This study characterizes the mechanical properties of human brain tissue resected during the course of surgery under multistep indentation loading up to 30% strain. The experimental characterization using fresh, post-operative, human brain tissue is highly advantageous since postmortem times can affect its biomechanical behavior. Although the quasilinear theory of viscoelasticity (QLV) approach has been widely used to model brain tissue mechanical properties, our analysis concluded that the linear viscoelastic approach provided a better fit to the experimental data overall. The only statistically significant regional difference in observed stiffness was between the cortex gray and dentate gyrus. There were no statistically significant age or sex dependent differences, although the data suggested that the cortex white matter in males was stiffer than that in females. Our results can help improve the accuracy of finite element models of brain tissue deformation to predict its response to traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Masculino , Feminino , Humanos , Elasticidade , Viscosidade , Encéfalo/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos
7.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34746950

RESUMO

Fundamental questions about patient heterogeneity and human-specific pathophysiology currently obstruct progress towards a therapy for traumatic brain injury (TBI). Human in vitro models have the potential to address these questions. Three-dimensional spheroidal cell culture protocols for human-origin neural cells have several important advantages over their two-dimensional monolayer counterparts. Three-dimensional spheroidal cultures may mature more quickly, develop more biofidelic electrophysiological activity and/or reproduce some aspects of brain architecture. Here, we present the first human in vitro model of non-penetrating TBI employing three-dimensional spheroidal cultures. We used a custom-built device to traumatize these spheroids in a quantifiable, repeatable and biofidelic manner, and correlated the heterogeneous mechanical strain field with the injury phenotype. Trauma reduced cell viability, mitochondrial membrane potential and spontaneous synchronous electrophysiological activity in the spheroids. Electrophysiological deficits emerged at lower injury severities than changes in cell viability. Also, traumatized spheroids secreted lactate dehydrogenase, a marker of cell damage, and neurofilament light chain, a promising clinical biomarker of neurotrauma. These results demonstrate that three-dimensional human in vitro models can reproduce important phenotypes of neurotrauma in vitro.


Assuntos
Encéfalo , Esferoides Celulares , Sobrevivência Celular , Humanos , Neurônios , Fenótipo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34413579

RESUMO

Sophisticated three-dimensional microstructures fabricated using the negative tone SU-8 photoresist are used in many biomedical and microfluidic applications. Scanning electron microscopy (SEM) and profilometry are commonly used metrological techniques for the dimensional characterization of fabricated SU-8 microstructures but are not viable for non-destructive measurements and characterization of subsurface features like hidden microchannels. In this study, we report a unique methodology for the non-destructive dimensional characterization of SU-8 microstructures using the emitted autofluorescence radiation from fabricated SU-8 microstructures to generate depth profiles. The relationship between autofluorescence emission intensities and the thicknesses of the microstructures measured using SEM was determined and used to characterize the dimensions of unknown SU-8 microstructures based on their autofluorescence intensities. Lateral dimensions were also measured. This relationship was used to create highly accurate depth profiles for different types of microstructures including hidden subsurface features. These results were validated by comparison with SEM. The results suggest a feasible and accurate non-destructive, low cost, metrological technique to characterize SU-8 surface and subsurface microstructures using autofluorescence emission intensities.

9.
J Neural Eng ; 18(4)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33984848

RESUMO

Objective.Our laboratory has proposed chemical stimulation of retinal neurons using exogenous glutamate as a biomimetic strategy for treating vision loss caused by photoreceptor (PR) degenerative diseases. Although our previousin-vitrostudies using pneumatic actuation indicate that chemical retinal stimulation is achievable, an actuation technology that is amenable to microfabrication, as needed for anin-vivoimplantable device, has yet to be realized. In this study, we sought to evaluate electroosmotic flow (EOF) as a mechanism for delivering small quantities of glutamate to the retina. EOF has great potential for miniaturization.Approach.An EOF device to dispense small quantities of glutamate was constructed and its ability to drive retinal output tested in anin-vitropreparation of PR degenerate rat retina.Main results.We built and tested an EOF microfluidic system, with 3D printed and off-the-shelf components, capable of injecting small volumes of glutamate in a pulsatile fashion when a low voltage control signal was applied. With this device, we produced excitatory and inhibitory spike rate responses in PR degenerate rat retinae. Glutamate evoked spike rate responses were also observed to be voltage-dependent and localized to the site of injection.Significance.The EOF device performed similarly to a previously tested conventional pneumatic microinjector as a means of chemically stimulating the retina while eliminating the moving plunger of the pneumatic microinjector that would be difficult to miniaturize and parallelize. Although not implantable, the prototype device presented here as a proof of concept indicates that a retinal prosthetic based on EOF-driven chemical stimulation is a viable and worthwhile goal. EOF should have similar advantages for controlled dispensing of charged neurochemicals at any neural interface.


Assuntos
Eletro-Osmose , Retina , Animais , Biomimética , Ácido Glutâmico , Células Fotorreceptoras , Ratos
10.
Adv Mater ; 33(25): e2100026, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33984170

RESUMO

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.


Assuntos
Organoides , Módulo de Elasticidade , Análise de Elementos Finitos
11.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731359

RESUMO

Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.


Assuntos
Sistema Nervoso , Neurônios
12.
Transl Neurosci ; 12(1): 76-82, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33623714

RESUMO

This study investigated dietary supplementation as a prophylactic for neuroinflammation following traumatic brain injury (TBI) in a preclinical model. Adult male Sprague-Dawley rats received 30 days of supplementation with either water or two dietary supplements. The first consisted of high-dose omega-3 fatty acid (O3FA) (supplement A) along with vitamin D3 and vitamin E. The second had the same ingredients at different doses with an addition of cannabidiol (supplement B). Rats were subjected to an impact TBI and then euthanized 7 days post-injury and neuroinflammation quantified by histological detection of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and CD68, a marker of microglial activity. There was a trend toward increased GFAP staining in injured, unsupplemented animals as compared to sham, unsupplemented animals, consistent with increased activation of astrocytes in response to trauma which was reversed by supplement A but not by supplement B. The pattern of CD68 staining across groups was similar to that of GFAP staining. There was a trend toward an increase in the injured unsupplemented group, relative to sham which was reversed by supplement A but not by supplement B. CD68 staining in injured animals was concentrated in the perivascular domain. The consistency between trends across different measures of neuroinflammation showing benefits of high-dose O3FA supplementation following TBI suggests that the observed effects are real. These findings are preliminary, but they justify further study to determine the functional benefits associated with improvements in histological outcomes and understand associated dose-response curves.

13.
ASN Neuro ; 12: 1759091420922929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32403948

RESUMO

There is a critical need for understanding the progression of neuropathology in blast-induced traumatic brain injury using valid animal models to develop diagnostic approaches. In the present study, we used diffusion imaging and magnetic resonance (MR) morphometry to characterize axonal injury in white matter structures of the rat brain following a blast applied via blast tube to one side of the brain. Diffusion tensor imaging was performed on acute and subacute phases of pathology from which fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated for corpus callosum (CC), cingulum bundle, and fimbria. Ventricular volume and CC thickness were measured. Blast-injured rats showed temporally varying bilateral changes in diffusion metrics indicating persistent axonal pathology. Diffusion changes in the CC suggested vasogenic edema secondary to axonal injury in the acute phase. Axonal pathology persisted in the subacute phase marked by cytotoxic edema and demyelination which was confirmed by ultrastructural analysis. The evolution of pathology followed a different pattern in the cingulum bundle: axonal injury and demyelination in the acute phase followed by cytotoxic edema in the subacute phase. Spatially, structures close to midline were most affected. Changes in the genu were greater than in the body and splenium; the caudal cingulum bundle was more affected than the rostral cingulum. Thinning of CC and ventriculomegaly were greater only in the acute phase. Our results reveal the persistent nature of blast-induced axonal pathology and suggest that diffusion imaging may have potential for detecting the temporal evolution of blast injury.


Assuntos
Traumatismos por Explosões/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Substância Branca/diagnóstico por imagem , Animais , Traumatismos por Explosões/complicações , Lesões Encefálicas Traumáticas/etiologia , Masculino , Ratos , Ratos Sprague-Dawley
14.
J Neurophysiol ; 122(3): 1174-1185, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116639

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, which manifests clinically as progressive weakness. Although several epidemiological studies have found an association between traumatic brain injury (TBI) and ALS, there is not a consensus on whether TBI is an ALS risk factor. It may be that it can cause ALS in a subset of susceptible patients, based on a history of repetitive mild TBI and genetic predisposition. This cannot be determined based on clinical observational studies alone. Better preclinical models are necessary to evaluate the effects of TBI on ALS onset and progression. To date, only a small number of preclinical studies have been performed, mainly in the superoxide dismutase 1 transgenic rodents, which, taken together, have mixed results and notable methodological limitations. The more recent incorporation of additional animal models such as Drosophila flies, as well as patient-induced pluripotent stem cell-derived neurons, should facilitate a better understanding of a potential functional interaction between TBI and ALS.


Assuntos
Esclerose Lateral Amiotrófica , Concussão Encefálica , Proteínas de Ligação a DNA , Células-Tronco Pluripotentes Induzidas , Superóxido Dismutase-1 , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Concussão Encefálica/complicações , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Humanos
15.
Clin Biomech (Bristol, Avon) ; 64: 114-121, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29449041

RESUMO

BACKGROUND: Traumatic brain injury poses an enormous clinical challenge. Rats are the animals most widely used in pre-clinical experiments. Biomechanical simulations of these experiments predict the distribution of mechanical stress and strain across key tissues. It is in theory possible to dramatically increase our understanding of traumatic brain injury pathophysiology by correlating stress and strain with histological and functional injury outcomes. This review summarizes the state of the art in biomechanical simulation of traumatic brain injury in the rat. It also places this body of knowledge in the context of the wider effort to understand traumatic brain injury in rats and in humans. METHODS: Peer-reviewed research articles on biomechanical simulation of traumatic brain injury in the rat were reviewed and summarized. FINDINGS: When mathematical models of traumatic brain injury in the rat first emerged, they relied on scant data regarding biomechanical properties. The data on relevant biomechanical properties has increased recently. However, experimental models of traumatic brain injury in the rat have also become less homogeneous. New and modified models have emerged that are biomechanically distinct from traditional models. INTERPRETATION: Important progress in mathematical modeling and measurement of biomechanical properties has led to credible, predictive simulations of traditional, experimental models of traumatic brain injury in the rat, such as controlled cortical impact. However, recent trends such as the increasing popularity of closed head models and blast models create new biomechanical challenges. Investigators studying rat brain biomechanics must continue to innovate to keep pace with these developments.


Assuntos
Fenômenos Biomecânicos , Lesões Encefálicas Traumáticas/fisiopatologia , Animais , Simulação por Computador , Modelos Animais de Doenças , Análise de Elementos Finitos , Cabeça , Humanos , Modelos Teóricos , Ratos , Estresse Mecânico
16.
J Neurosci Methods ; 312: 154-161, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529411

RESUMO

BACKGROUND: Unbiased screening studies have repeatedly identified actin-related proteins as one of the families of proteins most influenced by neurotrauma. Nevertheless, the status quo model of cytoskeletal reorganization after neurotrauma excludes actin and incorporates only changes in microtubules and intermediate filaments. Actin is excluded in part because it is difficult to image with conventional techniques. However, recent innovations in fluorescent microscopy provide an opportunity to image the actin cytoskeleton at super-resolution resolution in living cells. This study applied these innovations to an in vitro model of neurotrauma. NEW METHOD: New methods are introduced for traumatizing neurons before imaging them with high speed structured illumination microscopy or lattice light sheet microscopy. Also, methods for analyzing structured illumination microscopy images to quantify post-traumatic neurite dystrophy are presented. RESULTS: Human induced pluripotent stem cell-derived neurons exhibited actin organization typical of immature neurons. Neurite dystrophy increased after trauma but was not influenced by jasplakinolide treatment. The F-actin content of dystrophies varied greatly from one dystrophy to another. COMPARISON WITH EXISTING METHODS: In contrast to fixation dependent methods, these methods capture the evolution of the actin cytoskeleton over time in a living cell. In contrast to prior methods based on counting dystrophies, this quantification scheme parameterizes the severity of a given dystrophy as it evolves from a local swelling to an almost-perfect spheroid that threatens to transect the neurite. CONCLUSIONS: These methods can be used to investigate genetic factors and therapeutic interventions that modulate the course of neurite dystrophy after trauma.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neuritos/patologia , Neurônios/patologia , Citoesqueleto de Actina/patologia , Lesões Encefálicas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas
17.
J Alzheimers Dis ; 65(4): 1055-1064, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30149456

RESUMO

Functional outcomes after traumatic brain injury (TBI) vary widely across patients with apparently similar injuries. This variability hinders prognosis, therapy, and clinical innovation. Recently, single nucleotide polymorphism (SNPs) that influence outcome after TBI have been identified. These discoveries create opportunities to personalize therapy and stratify clinical trials. Both of these changes would propel clinical innovation in the field. This review focuses on one of most well-characterized of these SNPs, the Val66Met SNP in the brain-derived neurotrophic factor (BDNF) gene. This SNP influences neurological function in healthy subjects as well as TBI patients and patients with similar acute insults to the central nervous system. A host of other patient-specific factors including ethnicity, age, gender, injury severity, and post-injury time point modulate this influence. These interactions confound efforts to define a simple relationship between this SNP and TBI outcomes. The opportunities and challenges associated with personalizing TBI therapy around this SNP and other similar SNPs are discussed in light of these results.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Fator Neurotrófico Derivado do Encéfalo/genética , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/genética , Polimorfismo de Nucleotídeo Único/genética , Lesões Encefálicas Traumáticas/terapia , Humanos , Medicina de Precisão/métodos
18.
J Vis Exp ; (134)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29733307

RESUMO

Traumatic brain injury (TBI) is a major clinical challenge with high morbidity and mortality. Despite decades of pre-clinical research, no proven therapies for TBI have been developed. This paper presents a novel method for pre-clinical neurotrauma research intended to complement existing pre-clinical models. It introduces human pathophysiology through the use of human induced pluripotent stem cell-derived neurons (hiPSCNs). It achieves loading pulse duration similar to the loading durations of clinical closed head impact injury. It employs a 96-well format that facilitates high throughput experiments and makes efficient use of expensive cells and culture reagents. Silicone membranes are first treated to remove neurotoxic uncured polymer and then bonded to commercial 96-well plate bodies to create stretchable 96-well plates. A custom-built device is used to indent some or all of the well bottoms from beneath, inducing equibiaxial mechanical strain that mechanically injures cells in culture in the wells. The relationship between indentation depth and mechanical strain is determined empirically using high speed videography of well bottoms during indentation. Cells, including hiPSCNs, can be cultured on these silicone membranes using modified versions of conventional cell culture protocols. Fluorescent microscopic images of cell cultures are acquired and analyzed after injury in a semi-automated fashion to quantify the level of injury in each well. The model presented is optimized for hiPSCNs but could in theory be applied to other cell types.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Técnicas de Cultura de Células/métodos , Humanos , Microscopia de Fluorescência , Estresse Mecânico
19.
Otol Neurotol ; 38(8): 1205-1212, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692592

RESUMO

HYPOTHESIS: Internal jugular vein (IJV) compression influences not only intracranial but also intracochlear physiology and has demonstrated preclinical effectiveness in reducing acute audiological injury in a rodent blast model. However, the long-term effects in this model are unknown. BACKGROUND: Blast wave-induced audiological injury from an improvised explosive device is a leading cause of morbidity among service members in theater but there are limitations to the current protective measures. METHODS: For this study, we exposed 20 Sprague Dawley rats to a 16.8 ±â€Š0.3 PSI (195.3 dB SPL) right-sided shock wave in which 10 had application of a custom IJV compression collar in place at the time of injury. RESULTS: IJV compression at the time of injury was shown acutely to significantly reduce the incidence of tympanic membrane rupture and the initial temporary threshold shift on otoacoustic emissions in both the right and left ears of animals who had collar application immediately after and 7 days post injury. At 28 days from injury, collared animals demonstrated a return to baseline of otoacoustic emission values while the noncollared animals had persistent threshold shifts, signifying the presence of a permanent threshold shift only in those animals without collar application. IJV compression was also found to significantly reduce hair cell loss at the base of the cochlea secondary to mechanical trauma from the blast wind. CONCLUSION: Previously observed acute protective effects of IJV compression are sustained at chronic time points. IJV compression can potentially be used to reduce long-term permanent morbidity from blast-induced audiological trauma.


Assuntos
Traumatismos por Explosões/complicações , Transtornos da Audição/etiologia , Transtornos da Audição/prevenção & controle , Veias Jugulares/lesões , Emissões Otoacústicas Espontâneas/fisiologia , Animais , Cóclea/efeitos dos fármacos , Modelos Animais de Doenças , Células Ciliadas Auditivas , Veias Jugulares/fisiopatologia , Masculino , Pressão , Ratos , Ratos Sprague-Dawley , Roedores , Fatores de Tempo , Membrana Timpânica/patologia , Perfuração da Membrana Timpânica
20.
Acta Biomater ; 55: 333-339, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351681

RESUMO

To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. STATEMENT OF SIGNIFICANCE: We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Simulação por Computador , Hipocampo , Modelos Neurológicos , Substância Branca , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA